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Preface

What you are holding in your hands right now is a first version of the script that
one day will accompany this lab exercise. So I would like to encourage anybody
bold enough to actually read through it to report any typing and other mistakes
and to comment on style and overall content of this paper. Since this is also my
first WTEX document ever, missprints are very likely to occur. This means that
if anything is not clear, you don’t have to change but the script will be changed

to get the right message across to everybody.

The same is true for the lab exercises themselves. I am always open to new
suggestions concerning materials, experimental setups, ideas for lab exercises
and so on. Please do not hesitate to discuss your ideas with me. The current
schedule of experiments itself is not to be concerned as more than a beta-version.
Fortunately, the organization of the lab allows for a rather flexible compilation
of experiments to be conducted. This is a great chance to do interesting physics
for all of us!

My official contact coordinates are:

DI Georg Heimel

Institute of Solid State Physics
Advanced Materials Division
Graz University of Technology
Petersgasse 16

A-8010 Graz

Tel: 0316/873-8972
Fax: 0316/873-8478
EMail:  georg.heimel@tugraz.at

I usually can be found in or around room no. 311, which is on the 3"¢ floor
of the physics building in the Solid State Physics wing.



Topics for (recommended) further reading

In addition to the present document I would suggest (and highly recommend) to
review the following topics in the textbooks listed in the Bibliography section,
any other textbooks known to you and/or any lecture notes you find suitable.
The information in this paper is rather condensed and is no match for the well

organized style information is presented in a good textbook.

e Electrodynamics

plane waves

— linear homogenous media

index of refraction and dielectric tensor

— interfaces and layered media

reflection, transmission, absorption, Fresnel coefficients

e Solid State Physics

optical response

— index of refraction and dielectric tensor

absorption, reflection and transmission

— electrons in solids

band model for electrons (and phonons)
e (Quantum)Mechanics

— band model of electrons and phonons
— harmonic oscillator

— hydrogen atom
e Optical Spectroscopy

— light sources
— dispersive elements and spectrometers

— detectors



Basic organization of the two day lab

The lab will last for two consecutive days, about 10 hours each (including
breaks). We will usually start at 9 am in my office. The schedule of the lab is
as follows:

e Discussion of the basics

e Experiments

design and setup of experiments
— sample preparation

actual measurements

— brief discussion of the results

Closing discussion of all results

Protocol (either individual or group)

e Discussion and (if necessary) correction of the protocols
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Chapter 1

Introduction

The topic of this lab exercise are the optical properties of solids. In a broader
scope, we will have to deal with the interaction of light with matter. Electromag-
netic radiation covers a wide range of wavelengths where different mechanisms
of interaction are important. With optical range one usually refers to the vis-
ible spectral range and to wavelengths right next to the visible range. More
precisely, we can split the wavelengths of electromagnetic radiation that we are

interested in during this lab into three parts:

e Near Infrared (NIR) 800nm - 10000nm
e Visible (VIS) 400nm - 800nm

e Ultraviolet (UV) 100nm - 400nm

Consequently, we will perform UV/VIS/NIR spectroscopy to investigate the
optical properties of solids (and solutions). This will involve both, transmission

experiments and fluorescence measurements.

This manuscript is organized as follows: First, we will discuss a macroscopic
approach of light propagation in media and processes at interfaces between
media. Next, we will look at the microscopic scale to explain the macroscopic
quantities on the basis of the quantum mechanical nature of all matter. This not
only will allow us to better understand the actual outcome of our experiments,
but will also lead us to the last chapter of this document, which describes
the experimental techniques and the components used to realize them. The
connection to the first two, more theoretical chapters is, that the same processes
that we induce and want to understand in the sample that we investigate, are

exploited for applications in the measurement apparatus.



Chapter 2
Macroscopic Description

In this chapter we will discuss the classical electrodynamics approach to the
optical response of (solid) media. Most formalisms and formulas should be
already familiar to the reader. The basic concept of this approach is the propa-
gation of light (seen as continuous electromagnetic waves rather than particles)

in homogenous media and through interfaces between homogenous media.

2.1 Electromagnetic Radiation

For our purposes it is sufficient to regard (monochromatic) light as a linearly
(say along z) polarized plane wave of the electromagnetic field E that oscillates
with frequency w = 27v and Amplitude Ey over time ¢ and propagates in z-
direction.

E = Eye'k==wb) (2.1)

Here, k is the wavevector (in our case pointing in z-direction) that is related to
the light wavelength A and the (complex) index of refraction n of the medium
the light is propagating in as follows.

nw 2mm _ 27(n+ik)

k= — = = 3 (2.2)
Note that the real part of n (denoted as n for the rest of this document) is
simply the ratio ¢/cy between the speed of light ¢ in the considered medium
and the speed of light in vacuum c¢y. Substituting Eq. 2.2 into Eq. 2.1 not
only shows this but also reveals that the imaginary part x of the refractive
index describes the damping (absorption, extinction) of the electromagnetic

wave inside a medium. The real part n of the refractive index is responsible for



CHAPTER 2. MACROSCOPIC DESCRIPTION 3

well known phenomena like refraction or total reflection at interfaces.

123985 1234
" hwleV] T hwleV]

Alnm)] (2.3)

At this point, it seems convenient to remark that the relation between the

photon energy hw and A of light is approximately given by Eq. 2.3.

2.2 Processes at interfaces

We will now consider a simple system (depicted in Fig. 2.1) where light with
intensity I°(= EE*) propagating in medium no. 1 characterized by n; impinges

perpendicularly on the interface to a second medium described by ns.

-z i

z

Figure 2.1: Model System of the interface between two linear, homogenous and
isotropic media 1 and 2 characterized by their respective refractive index n; and
n, in the reference frame of the cartesian coordinates x and z. Of the incident
intensity I° (at the interface 2 = 0) one part I? is reflected while the other
part I is transmitted through the interface, enters medium 2 and propagates

therein.

Solving Maxwell’s equations for the general case depicted in 2.1 yields for

the percentage of reflected light intensity:

I (ng —my)(ng — ny)*
IO (111 —|—n2)(n1 +Il2)*

(2.4)
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Here, the star (*) indicates the complex conjugate. Depending on the type of
measurement we will conduct, there are three sample cases we need to examine

more closely.

2.2.1 Interfaces between transparent media

We will call a medium transparent at optical wavelengths if no absorption oc-
curs in the visible spectral range. Air, glass or water would be examples for
transparent media. In our model, this means that n; and ns are real (n; = n
and ny, = ngy), respectively that their imaginary parts disappear (k; = 0 and
ko = 0). As a special case of Eq. 2.4, the percentage of reflected Intensity I,
the reflectivity R and the percentage of transmitted intensity I7, the transmis-

ston T are given by:

(n1 —na)?
= — 2.
R (1 T )2 (2.5a)
4ning
T = 1—-R=———-"2°__ 2.5b
R (n1 + n2)? (2.5)

Clearly, intensity that is not reflected by the interface must be transmitted
through the interface (I° = I'* + IT"). No loss occurs within the media.

2.2.2 Interfaces between transparent and absorbing media

Let us now consider the interface between a transparent medium (say air) and
an absorbing medium (typically one of our samples). In that case only k1 = 0
but ko # 0. This means that n;(= nq) is real but ny = ny + iks is complex.
Also, the index of refraction of air can be considered to be equal to unity, so we
will assume ny = 1. As a further simplification of the general form presented in

Eq. 2.4, the reflectivity and the transmission are then given by:
(n2 — 1)* + K3

(n2 +1)2 + K3
1-R (2.6b)

(2.6a)

Again, intensity that is not reflected by the interface must be transmitted
through the interface (I° = I® + IT). But what happens to the transmit-
ted intensity? Right after entering the absorbing medium no. 2 at z = 0,
IT(z = 0)=I7 is given by Eq. 2.6. The light is then propagating in medium

no. 2 in z-direction and is gradually attenuated following Beer- Lambert’s law:

IT(2) = IFe 2%, z2>0 (2.7)
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Here, « is the absorption coefficient that is related to k via:

Ak
= — 2.8
a= (2.8)

Light is attenuated following an exponential law in an absorbing medium.

2.2.3 An absorbing slab in air

Next we will consider a slightly more complex but all the more realistic system
schematically depicted in Fig. 2.2. This situation corresponds more or less

to that encountered in our experiments. A coplanar slab (thickness d) of an

7
A &

Y
z

Figure 2.2: Schematic representation of a transmission experiment. The sample
is a coplanar slab of thickness d of an absorbing medium (ns = ng + ik2).
Reflection occurs at both interfaces, e.g. not only when light enters the slab,
but also when it leaves. In total, one part of the incident intensity I° is reflected
(I, one part is transmitted (I7) and a third part is absorbed.

absorbing medium (ns = ny + ikg) is surrounded by air (ny =ny ~ 1, k; = 0).
In that case, multiple reflections at both interfaces and their interference have
to be considered (compare Fabry-Pérot interferometer). Provided one cannot
resolve the interference fringes but rather observes an averaged value, one finds

for transmission and reflectivity:

(1= R)?(1 + ka/n3)e 4
1— R2€72d0‘

R(1+ (T)e ) (2.9b)

(T) (2.9a)

(R)

In contrast to the case of a single interface discussed above, the sum of the

total reflected and transmitted intensity does not equal the incident intensity
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(IT + I < I° unless k9 = 0 as well). Part of the light (I) is absorbed inside
the sample so that we find I7 + I + 4 = I°. To really determine the complex
refractive index of a material would be a major experimental task, that requires

elaborate and quite involved techniques (ellipsometry).

2.3 Optical density

For our experiments we will somehow simplify and modify above described sit-

uation, because there are certain limitations we have not discussed yet.

e In general, our samples do not form freestanding films. They have to be
investigated mounted on a supporting (glass-)substrate making the total

system one of three media (air-sample-substrate-air) and three interfaces.
e We do not know the exact thickness of the layer of sample material.

e Reflectivity is harder to measure since it involves more optical components
that need to be accounted for. Therefore we will mainly conduct trans-

mission experiments, where we know I° and experimentally determine I7.

e For soluble systems we need to consider the system air-vial-solvent-sample

where above findings can not be applied that easily.

Therefore we will consider neither the refractive index nor the absorption coef-
ficient but a third quantity, the optical density (OD). In order to motivate the
term optical density we consider the way we will measure it.

1. Determine the transmission of the substrate (or solvent in vial) alone.
2. Measure the transmission of sample plus substrate (or solvent).

3. Neglect the differences in the reflection processes in the two measurements.
All that remains to be considered is then the difference in the absorption

processes in the two measurements.

Suppose the intensity transmitted through the substrate alone is 17 and

substrate

the intensity transmitted through the system sample+substrate is I~ We

sample*

then propose (compare Eq. 2.7) the relation:

” =1L e (2.10)

sample substrate

where d is the thickness of the sample layer (see Fig. 2.2). Since we do not

know the thickness of the sample we can only extract the product aed and define
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the optical density as:

Igzzmple d
T = e _ o (2.11a)
Isubstrate
IT
OD = -—log <1Tmmple> = —log;o (T) x ad (2.11b)
substrate

For example OD = 1 means that only one tenth of the light is transmitted
through the sample and the substrate compared to the substrate alone (trans-
mittance T = 0.1 = 10%).

2.4 The dielectric tensor e

While the refractive index n is the quantity dealt mostly with in optics, the real
material related quantity that appears in Maxwell’s equations is the dielectric
function (tensor) e. It describes the (linear) response of a substance to an
external electric field E.,;. In our case this (time dependent) external electric
field is of the form Eq. 2.1. By polarizing the medium (shifting the electrons
with respect to their nuclei and thus creating dipoles and dipole moments) a
field opposite to the external one is generated inside the sample. We call this
the macroscopic polarization P. The resulting field inside the material, E;,;, is

then simply the sum of E.,; and P.
Eint = EELEt +P (212)

In general, P = P(E) will be some function of the electric field, in our case it is
simply proportional. The constant factor relating polarization to electric field

is the electric suszeptibility x. The dielectric function is related to y via:

Eint - Eewt + XEe:Et = (1 + X)Eewt = €Eewt (2133)
14y (2.13b)

€

In the same way as n can be conveniently denoted as a complex quantity, also
€ = &, + ig; is complex in general with a real part €, and an imaginary part ;.
The relation between the dielectric function and the refractive index is:

n=/ (2.14)

Since both quantities are complex we find for the real and imaginary parts the

relations

n = —=+ver+ € (2.15a)

,_.S,_.
[\}

K = —\/—€&r+ 2.15b
7 lef ( )
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on one hand and solving for € we find
g = n?—kK? (2.16a)
g = 2nk (2.16b)

on the other hand. If ¢; # 0 the external electric field not only polarizes the
medium but also induces a current to flow, like one would expect it to be the
case for conducting media. The imaginary part of the dielectric function is then

related to the (optical) conductivity o of the investigated materials via

= 2.17
&= (2.17)

where ¢ is the vacuum dielectric constant and w the light frequency (see Egs.
2.1 and 2.2).

The dielectric tensor is above all a function of the frequency of the incident
light. Its real and imaginary parts are not independent of each other. They are

linked via a so called Kramers-Kronig relation.

2 [ We(W)

g = Er(oo)—i—;/o mdw’ (2.18a)
2w [ e (W) —er(00)

g = ? ; de/ (218b)

Here, €,(c0) ~ 1 is the real part of the dielectric function far of from any
resonance (=absorption) at very short light wavelengths. It arises from the
response of the (positively charged) nuclei in the solid to the external (time-
dependent) electric field. We will now try to visualize the Kramers-Kronig
equations. From Eq. 2.15 follows that if ¢; = 0 then also x = 0 which means
that the medium does not absorb. However, if &; = 0 for any w then ¢,(w) =
er(00) ~ 1. This would lead to an n ~ 1 (via Eq. 2.15) and therefore to a
medium that not only does not absorb but also does not refract or show any
particular optical response different from vacuum. Form Eq. 2.18 follows that
only in the vicinity of an absorption feature (¢; > 0) the real part ¢, is different
from e,(c0). More precisely &, > &,.(c0) right below an absorption feature
and &, < &.(c0) right above (see Eq. 2.18). This behavior is schematically
represented in Fig. 2.3.

The real significance of the the Kramers-Kronig relations is that they allow
to compute one part of the dielectric function when only the other is known
from experiment. The major difficulty to overcome here are the boundaries of
the integrals in Eq. 2.18. In a typical realistic situation, the "known” part of
the dielectric function has only been measured in a limited energy range of the
light (for instance in the UV/VIS/NIR), which normally is far from [0,00).

To round off this chapter, the optical constants of some important sub-

stances are listed in Tab. 2.1.
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Figure 2.3: Real (&, solid line) and imaginary (&;, dashed line) part of a model
dielectric function as a function of the wavenumber 7 (in cm™!). The dotted

line is €; calculated from ¢, using the Kramers-Kronig relations (Eq. 2.18).

Table 2.1: Real part of the index of refraction (n), its imaginary part (), and
the absorption coefficient («) of several important materials. The wavelength

(M) these quantities were measured at is also given.

Material n afem™] &K A[nm]
Quarz-Glas 1.45800 - - 589.3
Polyethylene 1.51000 - - 589.3
Al;O3 1.77380 - - 589.3
Diamond 2.46000 0.10 - 400.0
GaAs 4.04000 - - 546.1
Silicon 4.20000 3-103 - 589.0
Germanium 5.10000 1-10* - 1000.0
NaCl 1.54414 - - 589.0
Silver 0.18100 - 3.67  589.0
Aluminum 1.44000 - 5.23 589.0
Water (20°C) 1.33283 - - 589.3

Toluene (20°C)  1.49693 - - 589.3




Chapter 3

Microscopic Description

So far we have learned how absorption and extinction processes in solids affect
their optical response and how to describe the optical properties of media with
macroscopic constants that fit well into the nice theory of electrodynamics based
on Maxwell’s equations. The origin of all light-matter interaction has of course
to be searched on the microscopic scale. Any matter is, after all, a bunch of
(negatively charged) electrons whirling around some more or less fixed, heavy,
and positively charged nuclei. On the length and energy scales where we can
observe nuclei, electrons and the distances and binding energies between them,
classical models break down and one has to resort to quantum mechanics. In
this chapter we will devise models to describe the interaction of light (still seen
as an electromagnetic wave) with simple quantum mechanical model systems.
A crosslink from the microscopic processes, that are of essentially quantized

nature, to the classical, macroscopic material constants will be established.

3.1 A simple two level system - the Einstein B

coefficient

Any system consisting of electrons and nuclei, be it a single atom, a molecule
or a solid, has a quantum mechanical ground state and an (or several) excited
state(s). Under certain conditions, that we will discuss in this section, the
system in question can undergo a transition between these states. We will
assume that the system resides in its ground state |¥() with the ground state
energy Fy before we shine light on it. Furthermore we will consider one single

excited state |¥;) with energy Ey + fuwp; only. The whole system is now that

10
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of a medium represented by two states and a (monochromatic) continuous light
wave with frequency w that is switched off for times ¢ < 0 and switched on for
t > 0. The situation for ¢ < 0 and immediately after switching on the light are
schematically represented in Fig. 3.1(a) and 3.1(b). With a certain probability,

“'P1> _O_ E()'Fh(DOl “‘P1> _O_ E0+h(1)01 |"I"1> _._ E()+h(})01
V> =—l— E, Vo> —@— E, o> =—O—E,
(a) t<O (b)t>0 (¢) Absorption

Figure 3.1: The quantum mechanical test system is in its ground state |¥y)
before the light is switched on (a). For times ¢ > 0 light with frequency w is
allowed to interact with (the electrons of) the system (b). This may lead to
the absorption of an energy quantum hwg; out of the electromagnetic field that
promotes the system from |¥y) into its first excited state |¥1) (c).

the system now takes up one quantum hwg; of light from the electromagnetic
field it is interacting with. After this absorption process, the system is no longer
in its ground state |¥g), but rather in its first excited state |¥1). Mind that it is
still interacting with the light field. This situation is depicted in Fig. 3.1(c). For
an atom or molecule, this process corresponds to promoting an electron from

the highest occupied orbital into the lowest energy unoccupied orbital.

A realistic medium might be considered as an ensemble of very many such
two level systems (atoms, molecules, ...). Let us assume the number of two
level systems in their ground state per unit volume (density) to be ng. The

number of of absorption processes per time and volume is then given by:

% = —Boi1nouw f(w) (3.1)
where wu,, is the spectral density of the light, f(w) the normalized lineshape of
the transition and By, the Einstein B coefficient for absorption. The spectral
density of the incident light is equal to the number of photons of frequency
w per unit cell volume. In the case of monochromatic light this reduces to a
delta function d,. The lineshape f(w) of the transition accounts for the fact
that light is not only absorbed if the light frequency matches the transition
frequency exactly (w = wg1) but also if it is close by. Only the transition
probability is much lower. This can be motivated by a kind of energy-time
uncertainty relation. As we will see later (see Sect. 3.4) the two level system

does not stay forever in its excited state but relaxes back down. The time it
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stays up in |¥;) determines the width I" of the absorption line. The lineshape is
usually described by a Lorentz profile (see Eq. 3.2) very much like in a damped
and forced harmonic oscillator.

2 r

f(w) - ; 4(w - WQ1)2 + 12 (32)

The Einstein B coefficient can be derived from time dependent perturbation
theory in quantum mechanics. The result is:

42 R
By = e Z (Wi | Wo)|? (3.3)
§

where the sum runs over all cartesian components & of the electric dipole opera-
tor i (related to the position operator T via ji = —ef') and (3 is the fine structure
constant:

e? 1
4dmeghc = 137
with the elementary charge e. The absorption coefficient (see Eq. 2.8) is related
to this Einstein B coefficient and Eq. 3.1 via:

p= (3.4)

o X thlBol (35)

since Eq. 2.7 is for intensities and Eq. 3.1 is for numbers of events. Note that
integrating Eq. 3.1 under consideration of Eq. 3.5 yields Eq. 2.7.

3.2 Band structure - Electrons in crystalline solids

The two level system is a good description for gases and liquids, where the iso-
lated two level systems correspond to atoms or molecules that do not interact
too much with each other. In both cases, the microscopic constituents of the
system are arranged randomly and change their positions and orientations rel-
ative to each other due to thermal motion. However, in many solids, the atoms
and molecules interact more strongly and arrange in perfectly regular, periodic
patterns. This periodicity, the long range order, and the interaction between the
building blocks are responsible for some particular properties of the electronic
states in crystalline solids. The ground and excited states |1§) and [¢7) of the

originally decoupled two level systems start to interact and form new states.

Let us first consider the simplest case of two interacting units 1 and 2
with the ground (occupied) states |¢¢) and [43) and the excited (unoccupied)
states [11) and [¢?) respectively. The corresponding energies are Ef = EZ and

E{ = E}. Furthermore, we will assume that in the ground states of each of the
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units there are two electrons, one with spin up (1) and one with spin down ().
At large distance the two systems do not interact (left and right edge in Fig.
3.2). When bringing the units close together, they start to interact and form
new states [¢), [¢g ), [¢7), and |47 ) that are related to the |§) and |1]) via:

WE) = \%(w&mw&» (3.6a)
WE) = () + [62) (3.6b)

V2

The energies of these new states, ESE and Ef[ are in general different from each
other and from the E§ and E{ of the non-interacting system (center in Fig.
3.2). This also implies that the new transition energy fwg; of the interacting
system is different (smaller) than fiwg; of the non-interacting system. The form
of the wavefunctions is only schematically indicated to emphasize that they will
in general be different for ground (occupied) and excited (unoccupied) states.

Exciting the system from its ground state to its first excited state corresponds

o
o

8 .,
o .,
o .
o *
....

.......

.

+ ! !
PO S| N
|‘~V0 > |\|jo ..... m ......... |\|]0 >

N K
.....
. 9
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Figure 3.2: Two systems characterized by a ground state |1y} with two electrons
in it and an (unoccupied) excited state |11) start to interact at low distances.
New occupied and unoccupied levels [¢g), [1g ), [¢7), and |47 ) are created as
linear combinations of the non interacting levels. Orbital energies and excitation

energies Awp1 change due to the interaction.

to promoting an electron from the highest occupied molecular orbital (HOMO)
into the lowest unoccupied molecular orbital (LUMO).

At the next level of theory we will consider an infinite linear chain of two

level systems that are separated by a distance a. The ground states [1}) and
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excited states WJ{ ) again interact and form new states.Instead of a simple plus
and minus linear combination (see Eq. 3.6) as in the two subsystem case, we
will now have a whole range of phase relations between neighboring systems.
This situation is depicted in Fig. 3.3 for both, occupied and unoccupied states.
Again, the form of the wavefunction on the individual sites has no physical
justification. I has been chosen simply to visualize the relation between the

amplitude and the sign of of the wavefunctions on different sites. From top to

Figure 3.3: In a linear chain of interacting two level systems separated by a
distance a, the wavefunctions of both the ground (occupied) and the excited
(unoccupied) states mix and form new wavfunctions |¢);) with a certain lattice

periodicty characterized by the wavevector k.

bottom in Fig. 3.3 we see a few possible wavefunctions |¢;) between the two



CHAPTER 3. MICROSCOPIC DESCRIPTION 15

extremals where all repeating units look alike (top panel) and where the wave-
functions in adjacent subsystems are of opposite sign (bottom panel). These
wavefunctions |¢)) are characterized by a lattice periodic part u(z) (related to
|tbo) or |¢1) but not necessarily equal to, as falsely implicated in Fig. 3.3) and a
certain k that specifies their periodicity with respect to the periodicity of the lat-
tice a. The pictorial approach from Fig. 3.3 can be formulated mathematically

V() = up(z)e”* (3.7)

Such functions (Eq. 3.7) are called Bloch functions. Generally, the energy of
a given |¢) depends on k. In the case of almost free electrons the energy
dispersion relation is of the functional form:
h2k?
k)= (3.8)
2iery

where g sy is the effective mass of an excess electron in an unoccupied (excited)
state (e > 0) or the effective mass of an excess hole in one of the occupied
(ground) states (un, < 0). When we plot the state energies as a function of the

Energy

Absorption Coefficient au

J +
VB ¥ &

ket/a k=0  k=/a N Energy

(a) (b)

Figure 3.4: In the left panel (a) the valence (VB) and conduction band (CB)
for the case of quasi-free electrons in a semiconductor with gap energy E, are
plotted. Right next to the band scheme the density of states n(E) is given. The
vertical arrows represent optical transitions where an electron is excited from
the VB to the CB by absorbing light fw. These inter-band transitions result in
an energy dependent absorption coefficient « plotted in the right panel (b).

wavevector, we arrive at the so called bandstructure of our model system (see
Fig. 3.4), where the occupied states derived from the two-level ground state

[tho) form the walence band (VB) and those stemming from the |¢))s evolve
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towards the conduction band (CB). If the former is fully occupied and does
not energetically overlap with the latter the considered material is an isolator.
If the forbidden energy window is small enough to be in the optical region,
isolators are commonly called semiconductors and the forbidden energy window
is the bandgap. The bandgap energies E, for some important semiconductors
are listed in Tab. 3.1. In a realistic 3D crystal, the form of the bands will
be different for each direction and k will become a vector k. However, for a
polymer the 1D bandstructure model is still under discussion.

Table 3.1: Bandgap energies in eV at room temperature for some important

semiconductors

Material ~Eg4[eV]

Si 1.120
Ge 0.665
GaAs 1.430
PbS 0.370
InSb 0.180

If we review Egs. 3.1 to 3.5 we can conclude that in addition to our
Lorentzian lineshape, the absorption coefficient o becomes energy dependent.
For any given light energy fw there is a number of occupied-unoccupied state
pairs distributed over k-space. How many states there are at a certain energy
is determined by the density of states (DOS). The probability for an absorption
process will certainly be proportional to that. Since the photon momentum is
much smaller than the electron momentum, only vertical transitions need to be
considered as indicated in Fig. 3.4(a). Consequently, for any given transition
energy, we need to sum over all k and over all corresponding pairs of initial
(occupied) and final (unoccupied) states that match the energy in question.
Expanding Eq. 3.3 accordingly yields for the respective Einstein By, (electron-
hole) coeflicient:

Ben(w) o< Y > [ Pliae v P)1%6 (B() P — BE(k)VP - hw) (3.9)
¢k

The cartesian components of the Einstein B, coefficient and subsequently the
absorption coefficient and the dielectric tensor can be obtained by omitting the
sum over the cartesian orientations £&. A number of further simplifications to
Eq. 3.9 finally leads to a square root dependence of the absorption coefficient
on the incident light energy, as depicted in Fig. 3.4(b).
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3.3 Excitons

As discussed in the last section, light with energy greater that the bandgap
promotes an electron from the fully occupied valence band into the completely
empty conduction band. However, the electron and the hole do not move inde-
pendently from each other, once they are generated. Since the hole represents a
positive charge and the electron a negative charge, one would expect the two to
interact via Coulomb attraction. This is indeed the case in many anorganic and
organic semiconductors. The two charges form a hydrogen-atom-like system.
Instead of one completely delocalized electron and a delocalized hole, the pri-
mary optical excitation in semiconductors is a bound electron-hole pair called

exciton.

This exciton is localized in space and its energy is smaller then the gap
energy E, by the exciton binding energy. The consequences of this localization

are further discussed in Sect. 3.5.

3.4 Fluorescence

So far, we have only considered light absorption processes, where energy is
transferred from the electromagnetic field into our absorbing entity. This results
either in promoting a two level system from its ground to an excited state or,
in the case of semiconductors, in the promotion of an electron from the valence
to the conduction band. The latter process correspond to the creation of an
exciton. The system does not stay forever in its excited state. After a certain
lifetime 7 it relaxes back to the ground state, the electron and the hole recombine

by emitting a photon.

Let us again consider a (disordered) ensemble of (non-interacting) two level
systems. We start off with a certain amount (represented by a density nq) of
the systems being in their excited state |¥;) as shown in Fig. 3.1(c) and the
rest still being in their ground state |¥(). We then switch of the light and let
the system evolve. The change in the density of systems in their excited state

with time will follow a certain natural rate equation:

dn1

—=-A 3.10
q 1071 ( )

where A1 is the Einstein A coefficient for spontaneous emission. It can be

shown that it is related to the Einstein B coefficient via:

Aw 2 1

By = e (o)’ 11
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If one compares this finding to Eq. 3.3, one realizes that the one crucial quantity
that relates the microscopic electronic structure of our system to the macro-
scopic, experimentally observable effects, is the matrix element of the electric
dipole operator between the ground and the excited state of the system. This
is true for absorption and emission processes. Integrating Eq. 3.10 yields an

exponential decay law with a lifetime of the excited state 77! = Ajq.

Fluorescence cannot only come from isolated two level systems, but also
from solids. But if we consider the band model of the solid presented in Sect.
3.2, what is the initial, excited state, and what is the final state, the ground
state? For our sample semiconductor, the ground state is the fully occupied
valence band with an empty conduction band. In a free electron-hole pair, the
two charges are independently delocalized over the whole sample. However, for
recombination, they need to be physically close to each other, as is the case in
an exciton. Mind that, like a hydrogen atom, an exciton also knows excited
states. However, Kasha’s Tule states that a system, once excited, relaxes quasi
instantaneously into its lowest energy excited state from whence all fluorescence
comes from. Consequently, one can photoexcite a semiconductor with any light
of energy greater than F; minus the exciton binding energy, but fluorescence will
always come from the lowest lying exciton state. The emission light frequency is
independent of that used for excitation. It is only determined by the electronic
structure of the sample in question and is thus a characteristic quantity of the
material.

3.5 Electron-Phonon coupling

So far, we have completely neglected the fact that the configuration of the elec-
trons between the nuclei affects the binding between them. Suppose the nuclei
of a molecule or a solid to be at their equilibrium positions and the electron
cloud surrounding them to be in its ground state. The chemical bonds between
the individual atoms, that is the equilibrium distance between atoms and the
restoring force acting when displacing atoms out of their equilibrium positions,
are solely determined by that electron cloud. By photoexciting the system and
thus creating a bound electron-hole pair, one locally changes the electron config-
uration on and between nuclei. This will change the nature of the chemical bond
between the nuclei in the vicinity of this electronic excitation. One can expect
that as a consequence other equilibrium positions of the concerned nuclei would
be optimal for the system (lower energy). Forces will act on the concerned nu-
clei and push them towards their new equilibrium positions in the excited state.

This will not only stabilize the exciton by lowering its energy but also further
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confine and localize it. Following Kasha’s rule, fluorescence will then start from
this relaxed excited state back towards the ground state. So fluorescence will in
general be red shifted with respect to the lowest energy absorption. The above
described situation is depicted in Fig. 3.5.

Q

Energy Energy

Q a PL Int.

Figure 3.5: In addition to the electronic ground and excited state |ig) and
|th1), we introduce vibrational wavefunctions characterized by their quantum
number v’ and v” respectively. The energy parabola are chosen to describe
the vibrational motion and relaxation (AQ) along one normal coordinate @
of the system. The upwards arrows indicate allowed absorption transitions,
the downward arrows represent allowed emission transitions. The considered
transitions lead to the observed energy dependence of the absorption coefficient
a (middle panel) and to the energy distribution of photoluminescence intensity
(PL int., right panel). The resulting energy difference between the maxima of

absorption and emission spectra AF is referred to as Stokes Shift.

Before the absorption process, the system is in its electronic ground state
[tho). All nuclei reside at their respective equilibrium position @ = 0. More
precisely they vibrate with a frequency 2 around their equilibrium position in a
harmonic oscillator potential with a zero point energy of %hQ In other words,

the system is not only in its electronic ground state, but also in the respective
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vibronic ground state [v/ = 0) or simply |0’). The total wavefunction of the
system is the product |¢9)|0’) of the electronic and the vibronic parts (Born-
Oppenheimer approximation). In the excited state, the equilibrium distance
between the concerned nuclei is different (AQ) and therefore also the vibronic
part of the excited state total wavefunction [¢1)|v”). In order to evaluate our
energy dependent absorption coefficient a(w) we need to consider not one but
many final states [¢1)[v” = 0,1,2,...) for the matrix element of the electric
dipole operator between initial (ground) and final state.

elec.

—_——
(0ol fro 1) |v") = (Wolfiolebr) (0’0" (3.12)
~——

vib.
As indicated in Eq. 3.12, the electric dipole operator acts only on the electronic
part of our wavefunctions. Consequently the vibrational part can be separated
and reduces to calculating the overlap (0'|v”) between the vibrational wave-
functions in the electronic ground and excited state. The electronic absorption
crossection (treated in Sect. 3.1) is redistributed among the different vibrational
transitions |0') — [v”). In Fig. 3.5, the two vibrational energy parabolas are
displaced along @ by an amount AQ. The maximum of |0’) is vertically aligned
with the left maximum of |1”) as indicated by the left vertical dotted line. We
can therefore expect (0’|1”) to be the most important overlap matrix element
and consequently the |0') — [1”) transition to be the most prominent in the
absorption spectrum of our model system (0-1 in the middle panel of Fig. 3.5).

Once the system is excited and has arrived in its upper state |¢1)[v"), it
relaxes ultrafastly into its lowest energy excited state |¢1)|0”) (Kasha’s rule).
There it stays for the excited state lifetime 7 and then drops back to the elec-
tronic ground state by emitting a photon. Again, the system can drop back
to any vibrational state |v") of the electronic ground state |1g). How the pho-
toluminescence (PL) intensity is redistributed among the possible transitions
depends again on the overlap matrix elements (v'|0”). Since the harmonic os-
cillator vibrational energy parabolas in Fig. 3.5 have the same curvature, the
situation is symmetrical to the absorption process. The maximum of |0”) is
vertically aligned with the right maximum of |1’} as indicated by the right ver-
tical dotted line. We can therefore expect (1’|0”) to be the most important
overlap matrix element and consequently the |0”) — [1’) transition to be the
most prominent in the fluorescence spectrum of our model system (0-1 in the
right panel of Fig. 3.5).

In contrast to our simple two level model (Sects. 3.1 and 3.4), where the
maxima of absorption and emission spectrum (Lorentz profiles as in Eq. 3.2)
are at the same energy, the maxima of absorption and emission spectrum are

now energetically displaced by a AF, referred to as Stokes shift hereafter. The
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overall shape of the absorption and emission spectra, that is the relative intensity
of the |v) < |v”) transitions, is determined by AQ. In Fig. 3.6, the relative

intensity of the vibronic transitions is shown for a different values of AQ.

3 3
1
Energy Energy
(a) AQ =0 (b) AQ <
3 3
I 1 ] | | I | I
Energy Energy
(©) AQ > d) AQ >>

Figure 3.6: The redistribution of the electronic oscillator strength among the
vibronic transitions depends on the displacement of the ground and excited state
energy parabola along some normal coordinate Q. At AQ = 0 (a) all oscillator
strength is concentrated into the 0-0 transition, all others are forbidden. For
AQ # 0 (b-d) transitions to higher and higher vibrational states borrow from
the intensity of the electronic transition. The total spectral feature gets broader

and broader.



Chapter 4

Instrumentation

In this chapter, a short description of the experimental techniques, setups and
components necessary to do actual measurements will be given. Let us consider
the basic building blocks of a spectroscopic experiment:

e Light Source

e Optical Components

e Dispersive Element

e Detector

Since the instrumentation is practically the same for transmission and fluores-

cence measurements, the layout of this chapter will follow above list.

4.1 Light sources

Depending on the media and the principles used to create illumination, we can
divide light sources into two main groups. One for the VIS/NIR region and one
for the UV region. Many spectrometers have installed one of each type of lamp
in order to cover the whole spectral range needed in UV /VIS/NIR spectroscopy.
This generally involves switching of the light sources at a certain point during

the measurement.

22
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4.1.1 VIS/NIR light sources

The conceptually most simple method of illumination is the use of black body ra-
diation where the temperature 1" of the source determines the spectral emission
characteristic following Planck’s law.

2hc? 1

— 4.1
N e 1 (1

Here, ) is the wavelength of the emitted light, h is Planck’s constant, and
kp Boltzmann’s constant. The actual black body emitter is a usually a metal
(tungsten) heated ohmically. The form of the emitted spectrum (Eq. 4.1) is
shown in Fig. 4.1.

vizible

L . infrarad
ultraviolet

energy

0 1.0 wavelength, microns Z.U 3l

Figure 4.1: Emitted light intensity of a black body as a function of wavelength.

The curve parameter is the temperature of the source.

The one wavelength A4, where the maximum intensity is emitted is given

by Wien’s law.
AmazT = const. = 2898 umK (4.2)

However, not only heated solids can be used as broad band emitters in the visible
spectral range. Also gas-discharge lamps find use. Scattering of electrons and
ions on neutral atoms in the plasma lead to a continuous broad band emission
spectrum in the visible. The advantage of these gas lamps is the higher temper-
ature that can be achieved. Typical representatives would be (Quartz-) Halogen

lamps or high pressure mercury lamps.
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4.1.2 UV light sources

As one can see from Fig. 4.1, the UV part of the spectrum of a black body
emitter is rather low in intensity compared to the VIS/NIR part. Since the
temperature necessary to shift enough intensity into the UV-range (Egs. 4.1
and 4.2) are highly impractical, one has to come up with different solutions.
In addition to the plasma emission, high pressure gas lamps exhibit narrow
emission lines in the ultraviolet. They correspond to the fluorescence lines of the

individual atoms. Typical emission spectra are shown in Fig. 4.2. In addition
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Figure 4.2: Emission spectra of typical UV light sources. For comparison the

emission characteristic of a VIS broad band light source is also shown.

to the continuous broad band spectrum in the VIS region, sharp emission spikes
in the UV are clearly visible. Mercury lamps, Deuterium lamps or Xenon lamps

are typical representatives of this group of light sources.

4.2 Optical components

Between the main components of an optical setup, the light will be reflected,
collimated, focused, etc. several times on its path from the light source through
the sample to the detector. It will pass mirrors, windows and lenses. The optical
properties of all these components need to be considered in our experimental

setup.
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4.2.1 Mirrors

In spectrometers one normally needs broad band mirrors with a high and possi-
bly uniform reflectance over the whole UV /VIS/NIR range. The broad plasmon
resonance (collective excitations of the quasi-free electrons) of highly conduct-
ing metals provides this optical response. Mirrors are often made from either
polished metal surfaces, or a thin metal film is evaporated onto a suitable sub-
strate. Note that the surface roughness of the metal needs to be significantly
smaller than the wavelength of the reflected light in order to reduce scattering.
A mirror that looks highly reflective to the eye (VIS) might be a good diffuse
scatterer in the UV! A prototypical metal used for mirrors is Al, but also Ag

is used. The reflectance for thin films of these metals is of course wavelength

Table 4.1: Reflectance R at wavelength A\ of thin metal films deposited by

vacuum evaporation.

Material R )\ [nm)]
Ag 176 1860

18.9 208.0
18.1 289.0
34.3 360.0
55.0  460.0
97.2 560.0
70.4 660.0
75.5 690.0
Al 90.0  404.6
91.5 491.6
91.0 546.1
90.0 578.0
89.5 644.0

dependent. Some values are listed in Tab. 4.1.

4.2.2 Window, lenses, substrates, and sample cells

In the fabrication of transparent components for UV/VIS/NIR spectrometer
one needs to take into account the fundamental absorption of the materials
used. Ordinary glass as used for windows is not UV transparent. One has to
resort to Quartz glass or fused Silica to ensure UV compatibility. In Fig. 4.3
the transmittance of several glasses used for transparent components in optical
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Figure 4.3: Transmittance as a function of wavelength of several glasses used

for optical components (windows, lenses, etc.)in spectrometer setups.

setups is shown. Ordinary glasses are transparent up to ~ 300nm, while fused
quartz and fused silica can be used up to ~ 200nm. Also diamond and saphire
(Al303) can be used, the latter only as long as polarization does not need to be

taken into account, since saphire is birefringent.

4.3 Dispersive elements

The word spectrometer or spectrograph itself implies that the light is analyzed
separately for each wavelength. Consequently, one needs to find a possibility
to break down white light (from the light source) into its spectral components.
Apart from interferometry there are two basic concepts how this is achieved in

industrial solutions.

4.3.1 Prisms

In Sect. 2.4 we have seen that the dielectric tensor ¢ and consequently the
refractive index n is a function of the wavelength (see also Fig. 2.3, Tab. 2.1 and
Eqgs. 2.16 to 2.18). This is especially true in the vicinity of absorption features
and internal resonances. This wavelength dependence is generally referred to as
the dispersion of light in the medium. If the incident light has less energy than
the fundamental electronic absorption, the refractive index is higher for shorter
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wavelengths (=higher energies) as is shown in Fig. 2.3.

For light that passes through a prism with an opening angle v in a totally
symmetric configuration we find a total angle § of deflection:

0 = —7 + 2arcsin (n sin (%)) (4.3)

If we take a closer look at Eq. 4.3, we can see that, for a given geometry,
blue light is deflected more than red light since A..q > Apue and consequently
n(Apiue) > n(Areq). The resolution of a prism spectrograph is given by:

v dn
— = 4.4
Av Y (44)

where v is the light frequency, b the base length of the triangular prism and and
dn/dv is the prism glass dispersion.

4.3.2 Gratings

A better resolution and a higher dispersion can be achieved by diffraction grat-
ings. Since in transmission gratings most of the light intensity passes right

th (undispersed) order, reflection

through the grating and ends up in the zero
gratings are used for all practical purposes. Additionally these reflection grat-
ings are blazed for a certain wavelength and a certain order of diffraction to get
even more intensity in that specific order. The resolution of a grating is given

by:
av_ 1
A Nm
where A is the light wavelength, N the number of illuminated grates and m

(4.5)

the order of diffraction. Furthermore, the resolution depends on the slit width
used in the spectrometer setups. Generally gratings operate in first or second
order. One has to keep in mind that A = 350nm appears in second order at the
very same angle as A = 700nm appears in the first order. One also has to be
aware of the fact that the performance of a grating in terms of total diffracted
(reflected) intensity depends heavily on the polarization of the light with respect
to the grating orientation (parallel or perpendicular to the grates). Note that

in contrast to prisms, red light is deflected further than blue light.

4.4 Detectors

After having created the light, having sent it through the sample and after
having it spectrally dispersed, one still needs to determine the light intensity at
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a given wavelength. In order to accomplish this, two basic concepts are used.
The photo-effect in photomultiplier tubes and photoconduction in semiconductor

detectors.

4.4.1 Photomultipliers

In order to exploit Einstein’s photo-effect for light detection, one needs a three-
step setup:

e Photo-Cathode Usually a plate of a low workfunction metal. This means
that it does not take a lot of energy for a photon to kick an electron out
of the bulk metal. Alkali metals or a mixture of alkali metals are used as
photo-cathodes. If the light is too far in the red, the photons do not have
enough energy to promote electrons out of the metal. In order to sensitize
photomultiplier tubes in the red spectral region, the photo-cathodes can be

covered by a thin layer of GaAs or some other low-bandgap semiconductor.

e Dynodes After the electron has been brought out of the cathode by in-
cident light, it is accelerated towards a second metal plate, where it kicks
out a whole bunch of secondary electrons. All these secondary electrons
are then accelerated towards a third electrode and so on. After a cascade
of several such electrodes (dynodes) one electron has become a veritable

current pulse that finally impinges onto the

e Anode. The anode finally collects all these secondary electrodes and
records the total current flowing through the photomultiplier. Without
the photo-cathode the whole setup would be that of a secondary electron
multiplier (SEM). Since the mean free path length of electrons on air is
far to short, the whole described setup has to be mounted inside a vacuum
tube, the so called photomultiplier tube.

The above described setup is schematically depicted in Fig. 4.4. The total
voltage applied to the tube is in the range of several kV. In order to reduce the
dark current through the device, photomultipliers are often cooled, for instance
by Peltier elements. The material for the entrance window of the light has to be
chosen depending on the wavelength range a specific tube is used for (see also
Subsect. 4.2.2).
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Figure 4.4: Schematic representation of a photomultiplier tube. Electrons are
promoted out of the photocathode K by incident light, are then accelerated and
multiplied by a cascade of dynodes D until they finally arrive at the anode A.

4.4.2 Photoconduction detectors

The fact that incident, absorbed light (with energy greater than the bandgap)
creates electron-hole pairs in semiconductors, can be used to measure light in-
tensity. The more charge carriers are created inside a bulk semiconductor, the
higher its intrinsic conductivity. The efficiency of charge carrier generation de-
pends mostly on the absorption coefficient at a certain wavelength. We can
see the link to the more theoretical chapter of this manuscript. Light is ab-
sorbed in the semiconductor, first a bound electron-hole pair is created, then
the electron and the hole are pulled apart by a external electric field and lattice
vibrations. Since semiconductors come with a broad variety of bandgaps (see
Tab. 3.1, these detectors can be used over the whole UV/VIS/NIR range. In
Fig. 4.5, the spectral sensitivity for photoconducting detectors made of a variety

of semiconductors is shown.

Another possibility of using semiconductor devices for light detection is the
photodiode. A semiconductor diode is biased in reverse direction. No current
should flow. When one creates bound electron-hole pairs at the np-junction,
the built-in field pulls them apart, free charge carriers are generated, and a
photocurrent occurs in reverse direction that is proportional to the number of
created electron-hole pairs an thus to the incident light intensity. In order for
the light to access the interface between the two differently doped regions, one
of them (either n or p) has to be made very thin, or more precisely, semitrans-
parent. Very practical is the use of linear photodiode arrays, since the whole
spectrum can be recorded at one shot instead of scanning it with exit slit. A
photodiode array has to be read out in parallel mode. However, a specially

crafted device of a linear arrangement of diode-like structures on one piece of
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semiconductor material permits also a sequential readout of the whole spectrum.
These detectors are called charge coupled device (CCD).

1015 " 1 |
- (dS | 1
s l 1
0k d \ \BLIP D
- \BUIP p }(77K) E,
Si 1(300K) | /
J 18k (Bg%K)/\ ‘u \ /!
e E \ ’
= Ge:Au | N\ /)Gahs

Bk (TTKN o 2
:21012|— \\ //
%) CGaAs \ ’

o [ 30 PbTe 7
[P0 Pbsn;;{“\?'”PD L209°
B10"E N

\
= ”
= M

L HgCdTe (77K) /"\/\Ge:Zn(h.ZK)
100} /\

" GeAulyTKy ) | PontelTik)

109 x PUEPUTTN W S U N O B Y | PR T Y
0.1 1 10 100 1000
Wellenldnge [nm] —

Figure 4.5: Spectral sensitivity of several important types of photoconducting
semiconductor detectors.
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